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Based on...

Milnor’s concordance invariants for knots on surfaces
https://arxiv.org/abs/2002.01505

Virtual concordance and the generalized Alexander polynomial
https://arxiv.org/abs/1903.08737 (w/ H. U. Boden)
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Motivation



Milnor’s µ̄-invariants

Lower central series
G is a group. G1 = G , G2 = [G ,G ], Gq+1 = [Gq,G ].

G ◃ G2 ◃ G3 · · ·

L ⊂ S3, an m − component link
G = π1(S3 r L)
F = ⟨a1, . . . , am⟩

Theorem (Chen-Milnor)

G/Gq ∼= ⟨a1, . . . , am|[a1, λ
(q)
1 ], . . . , [am, λ

(q)
m ],Fq⟩
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Milnor’s µ̄-invariants

Magnus expansion
f ∈ F , Define ϵ(f ) ∈ Z[[a1, . . . , am]] by:

ai → 1 + ai , a−1
i → 1 − ai + a2

i − a3
i + · · ·

Let J = j1j2 · · · jr be a sequence in {1, 2, . . . ,m}.

ϵ(f ) = 1 +
∑

J=j1j2···jr

ϵJ(f )aj1aj2 · · · ajr

Applying this to L ⊂ S3,

µJ|k(L) = ϵJ(λ
(q)
k )

∆J = gcd{µĴ(L)},

Ĵ :=delete at least one term from J or any cylic permutation thereof.
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Milnor’s µ̄-invariants

µ̄-invariants

µ̄J(L) ≡ µJ(L) (mod ∆J)

Properties

µ̄-invariants are invariants of link concordance (Casson, Stallings).
µ̄-invariants vanish on boundary links (Smythe).
µ̄-invariants are trivial on 1-component links i.e. knots.
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Goals & Applications

GOAL: Construct extended µ̄-invariants

Invariants of virtual knots and knots in Σ× I.
Defined from LCS of the extended group of a virtual knot.
Invariants under virtual concordance.
Vanish on homologically trivial knots in Σ× I.

APPLICATIONS:

1. The virtual knot concordance group is not abelian.
2. Generalize µ̄-invariants to welded links and welded string links.
3. Reduce to 4 (out of 92800) the # of virtual knots from Green’s

table having unknown slice status.
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Virtual concordance



Concordance

Knots K , K ∗ in S3 are concordant if:

K

S3 × 1

S3 × 0

K ∗

S3 × [0, 1]

Slice knot/link:=Concordant to unknot/unlink
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Virtual concordance (Turaev ‘08)

Knots K ⊂ Σ× I, K ∗ ⊂ Σ∗ × I are virtually concordant if:

Σ∗

Σ

K∗

W 3 Λ ⊂ W × I

K

Virtually slice:= Concordant to the unknot in S2 × I
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Virtual knot diagrams
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Virtual knots → knots in Σ× I.
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Virtual knots → knots in Σ× I.
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Virtual knots → knots in Σ× I.
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Extended Reidemeister moves

v4�

r3�

v3�

r2�

v2�v1�

r1�
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Virtual knot concordance (Kauffman ‘14)

saddle L L ⊔
birth

death

Virtual knot
concordance :=

virtual knot diagrams(
v-moves+births+deaths+saddles s.t.
#births −#saddles +#deaths = 0

)

Theorem (Carter-Kamada-Saito ‘00)

Two knots in thickened surfaces are virtually concordant if and only if they
represent concordant virtual knots.
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Example (5.1216)
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Some facts about virtual concordance

Theorem (Boden-Nagel ‘17)

Two classical knots in S3 are concordant if and only if they are
virtually concordant.

Theorem (C, https://arxiv.org/abs/1904.05288)

Every virtual knot υ is concordant to:
a prime satellite virtual knot,
a prime hyperbolic virtual knot, and
if υ is almost classical (AC) knot, a prime satellite AC knot and a
prime hyperbolic AC knot having the same Alexander polynomial.
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Slice obstructions

2008-2019

(Turaev) graded genus ϑ.
(Dye-Kaestner-Kauffman) Rasmussen invariant.
(C-Kaestner) Henrich-Turaev polynomial.
(Rushworth) a 2nd Rasmussen invariant.
(Boden-C-Gaudreau 1, Rushworth) odd writhe.
(Boden-C-Gaudreau 1, Kauffman) writhe polynomial.
(Boden-C-Gaudreau 2) directed Tristam-Levine signature fncs.
(Boden-C) generalized Alexander polynomial ∆0.

14 49



Slice status of v-knots in Green’s table

Crossing Virtual ϑ = 0 ϑ = 0 & slice status
number knots sieve ∆0 = 0 knots unknown

2 1 0 0 0 0
3 7 1 0 0 0
4 108 15 14 13 0
5 2448 59 51 45 2
6 90235 1476 1294 1241 36

(BCG1,BCG2,BC) Summary of calculations above.
(White) Calculations of ∆0.
(Rushworth, Karimi) Rasmussen invariant calculations.
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Status unknown

The v-knots in red are slice. (C ‘20)

5.1216 5.1963 6.5588 6.5958
6.6589 6.7070 6.7388 6.8451
6.14778 6.14781 6.15200 6.15952
6.31455 6.33334 6.37879 6.38158
6.38183 6.43763 6.46936 6.46937
6.47024 6.47172 6.47512 6.49338
6.52373 6.62002 6.69085 6.70767
6.71306 6.71848 6.72353 6.72431
6.76251 6.76488 6.77331 6.77735
6.86951 6.89218
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Extended µ̄-invariants



Extended group

Many equivalent versions in the literature. We will use the following:
(Boden-Gaudreau-Harper-Nicas-White ‘17)

a b

d c

c = vav−1

d = a−1v−1bva

a b

d c

c = bvav−1b−1

d = v−1bv

a b

d c

c = a

d = b

G̃(L) := ⟨a1, . . . , a2n, v |r1, . . . , r2n⟩

This is an extension of the group of a virtual link L; just set v = 1.

G(L) = ⟨a1, . . . , a2n, v |r1, . . . , r2n, v = 1⟩
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Extended Chen-Milnor Theorem

Theorem (C ‘20)

L an m-component virtual link. Let F = F (m + 1) be the free group
on a1, . . . , am, v. The nilpotent quotients of G̃ = G̃(L) are given by:

G̃/G̃q ∼= ⟨a1, . . . , am, v |[a1, λ̃
(q)
1 ], . . . , [am, λ̃

(q)
m ],Fq⟩.

Corollary (C ‘20)

If K , is a virtual knot, F = ⟨a, v⟩, this gives:

G̃/G̃q ∼= ⟨a, v |[a, λ̃(q)],Fq⟩.

Note: the nilpotent quotients of G(K ) are free, but the nilpotent
quotients of G̃(K ) are generally not free.
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Extended µ̄-invariants

K a virtual knot diagram, J be a sequence {1, 2}, q > |J |.

�J(K ) ≡ ϵJ(λ̃
(q)) (mod ∆J|1)

The family of these residue classes are called the �-invariants.

Theorem (C ‘20)

The �-invariants are concordance invariants of virtual knots.

20 49



Extended µ̄-invariants

K a virtual knot diagram, J be a sequence {1, 2}, q > |J |.

�J(K ) ≡ ϵJ(λ̃
(q)) (mod ∆J|1)

The family of these residue classes are called the �-invariants.

Theorem (C ‘20)

The �-invariants are concordance invariants of virtual knots.

20 49



Example (3.5)

3.5

a1

a2

a3

a4

a5
a6

G̃ = ⟨v , a1, a2, a3, a4, a5, a6|a2 = va1v ,
a3 = va2v ,
a4 = va3v ,
a5 = a1va4va1,

a6 = a2va5va2,

a1 = a3va6va3⟩.
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Example (3.5)

Calculating first non-vanishing �-invariants

(1) Compute λ̃(q):
λ̃(4) = v2av2av2av2a3.

(2) Write λ̃(q) as a product of commutators.

λ̃(4) ≡ [[v , a], a]4[[v , a], v ]4 mod F4.

(e.g. via Hall’s Basis Theorem)
(3) Use properties of ϵJ to calculate ϵJ(λ̃

(q)) recursively.
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Example (3.5)

J �J

111 0
112 4
121 -8
211 4
122 -4
212 8
221 -4
222 0
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Properties

Definition (Almost classical knot)

A virtual knot is said to be almost classical if it admits a homologically
trivial representative in some Σ× I (i.e. bounds a Seifert surface).

Theorem (C ‘20)

If K is concordant to an almost classical knot, then all �-invariants of
K are vanishing.
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Properties

Theorem (C ‘20)

Let K be a virtual knot. If �J(K ) = 0 for all sequences J, then the
generalized Alexander polynomial of K is trivial.

Corollary (C ‘20)

Let K be a virtual knot. If �J(K ) = 0 for all sequences J, then the
odd writhe, Henrich-Turaev polynomial, and affine index (or writhe)
polynomial are all trivial.
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Revisiting the unknown

K Gauss code length of λ̃(6) λ̃(6) mod F6

6.6589 O1-O2-O3-O4+U3-O5+U4+O6+U2-U1-U5+U6+ 22 g10g11g12g13

6.7070 O1+O2-O3-U2-O4-U3-U5+U4-O6+U1+O5+U6+ 792 g10g11

6.15200 O1+O2+O3-O4+U3-O5-O6-U5-U1+U6-U4+U2+ 20 g10g11g12g13

6.15952 O1-O2-U1-O3-O4+U3-U5+O6+O5+U6+U2-U4+ 1120 g10g11g12g13

6.43763 O1+U2+O3+O4-O2+U4-O5-U6-U1+U5-O6-U3+ 586 g10g11

6.47172 O1+O2-O3-O4-U3-O5+U2-U6+U1+U4-O6+U5+ 634 g2
10g2

11

6.47512 O1+O2+O3-O4+U3-O5-U2+U6-U1+U5-O6-U4+ 934 g2
10g2

11

6.71848 O1-O2+O3-U1-O4-U2+O5+U6+U4-U5+O6+U3- 586 g10g11

6.72431 O1-O2+O3-U1-O4-U3-O5+U2+O6+U5+U4-U6+ 14 g10g11

6.76251 O1-O2+O3-U1-O4-U5+O6+U2+O5+U6+U4-U3- 498 g10g11

6.89218 O1-O2+U3+O4+U2+O3+U5-O6-U1-O5-U6-U4+ 2278 g10g11
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Revisiting the unknown

The commutator basis used by ANU NQ is:

g1 = a g8 = [v , a, v , v ]
g2 = v g9 = [v , a, a, a, a]
g3 = [v , a] g10 = [v , a, a, a, v ]
g4 = [v , a, a] g11 = [v , a, v , a, a]
g5 = [v , a, v ] g12 = [v , a, v , a, v ]
g6 = [v , a, a, a] g13 = [v , a, v , v , a]
g7 = [v , a, v , a] g14 = [v , a, v , v , v ]
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Revisiting the unknown

�J(K )

J 6.
65

89

6.
70

70

6.
15

20
0

6.
15

95
2

6.
43

76
3

6.
47

17
2

6.
47

51
2

6.
71

84
8

6.
72

43
1

6.
76

25
1

6.
89

21
8

21111 0 0 0 0 0 0 0 0 0 0 0
21211 1 -1 -1 1 -1 2 -2 1 1 1 -1
22111 0 0 0 0 0 0 0 0 0 0 0
22121 1 0 1 -1 0 0 0 0 0 0 0
22211 0 0 0 0 0 0 0 0 0 0 0
22221 0 0 0 0 0 0 0 0 0 0 0
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Beyond the first non-vanishing degree

These two knots have the same GAP, graded genus, slice genus, and
�-invariants up to degree 3.

4.19 4.32

�2221(K ) ≡ 1 (mod 2) �2211(K ) ≡ 0 (mod 2) �2111(K ) ≡ 1 (mod 2)
�2221(K∗) ≡ 1 (mod 2) �2211(K∗) ≡ 1 (mod 2) �2111(K∗) ≡ 0 (mod 2)
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Virtual knot concordance group



Concatenation

#

2.1 3.1 =
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Definition & background

Virtual concordance group
VC := (concordance classes of long virtual knots,#, 1 = long unknot)

Theorem (Boden-Nagel ‘17)

The classical knot concordance group C embeds into VC.

Turaev ‘08
Question: “Is it abelian?”

Theorem (Manturov ‘08)

Equivalence classes of long virtual knots are a non-commutative
monoid.
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Extended Artin representation

Theorem (C)

Let K⃗ be a long virtual knot, G̃ = G̃(K⃗ ), and F the free group on
a, v. For all q ≥ 2, there is a isomorphisms on nilpotent quotients:

G̃/G̃q
∼=−→ F/Fq.

Following Habegger-Lin ‘98, we define:

A(q)
� : VC → Aut(F/Fq+1)

A(q)
� (K⃗ )(v) = v

A(q)
� (K⃗ )(a) = λ̃(q)a(λ̃(q))−1
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Results on VC

Theorem (C ‘20)

A(q)
� is a concordance invariant of long virtual knots.

Theorem (C ‘20)

VC is not abelian.

Proof.
A(8)
� (2.1#3.1) ̸= A(8)

� (3.1#2.1)

Corollary (C ‘20)

There exist non-concordant long virtual knots with concordant closure.
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Twelfth knot

The extended Artin representation obstructs this v-knot from being slice.

6.8451
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Current unknown list

This leaves the following:

6.31445 6.52373 6.62002 6.86951
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Why is it true?



Extended µ̄-invariants

� =Bar-Natan’s � map, Tube = Satoh’s map.

Outline of proof

First, a geometric realization:

v-knots � // w-links Tube // Ribbon torus links in S4

These induce isomorphisms:

G̃(K ) ∼= G(�(K )) ∼= π1(S4 r Tube(�(K )), ∗)

(Boden-C, ‘19) � is functorial under concordance.

(Boden-C, ‘19) Tube is functorial under concordance.

(C, ‘20) Generalize µ̄-concordance invariants to welded links.

The �-invariants are: Milnor+Tube+�.
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Welded knots and “overcrossings commute”

Welded knots :=
virtual knots

“overcrossings commute”.
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The Bar-Natan � (“Zh”) map

Add a new component ω to make a semi-welded link.

ω

=

ω

ω

=

ω

How to form the extra component ω

Glue together the arcs ends arbitrarily, new crossings are virtual.

This is well-defined since “overcrossings commute” in ω.
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Example

� //
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Invariance under Reidemeister moves

ω

RM2

ω

RM1

ω

RM2

ω

RM2

ω

RM2

ω

=

ω

RM3

ω
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Lemmas for �

Lemma (Boden-C ‘19)

� maps concordant v-knots to concordant semi-welded links.

Lemma (Boden-C ‘19)

For all virtual knots K, G̃(K ) ∼= G(�(K )).

ω

x

a b

d c

c = ωaω−1

x = c−1bc
d = ω−1xω = a−1ω−1bωa

ω

x

a b

d c

d = ω−1bω
x = dad−1

c = ωxω−1 = bωaω−1b−1
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Satoh’s Tube map I: Broken surface diagrams

−→
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Satoh’s Tube map II: Definition

Tube //

Tube //

Tube //
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Properties of Tube

Theorem (Satoh ‘00)

L, L∗ equivalent w-links =⇒ Tube(L), Tube(L∗) ⊂ S4 are isotopic.

Theorem (Satoh ‘00)

For any welded link L,

G(L) ∼= π1(S4 r Tube(L), ∗).
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Concordance invariance of Tube

Definition (Torus Link Concordance)

A concordance of ribbon torus links T0,T1 ⊂ S4 is a smooth proper
embedding W in S4 × I with finitely many components, each
diffeomorphic to (S1 × S1)× I, and W ∩ (S4 × {i}) = Ti for i = 0, 1.

Theorem (Boden-C ‘19)

L, L∗ concordant w-links =⇒ Tube(L),Tube(L∗) concordant.
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µ̄-invariants for welded links

Lemma (C ‘20)

If L, L∗ welded-concordant virtual links, Λ a concordance between
Tube(L),Tube(L∗), then:

Qq(π1(S4 r T )) ∼= Qq(π1(S4 × I r Λ)) ∼= Qq(π1(S4 r T ∗))

Qq(G(L)) ∼= Qq(π1(S4 × I r Λ)) ∼= Qq(G(L∗))

and the isomorphisms preserve longitude words. Here Qq(A) denotes
the q-th nilpotent quotient of A.

Proof.
Apply Stalling’s theorem.
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µ̄-invariants for welded links

Theorem (C ‘20)

If L, L∗ are welded-concordant virtual links (or concordant ribbon
torus links in S4), then for all sequences J with |J | ≥ 2:

µ̄J(L) ≡ µ̄J(L∗) (mod ∆J).
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All together now

Recall that each map is functorial under concordance

v-knots � // w-links Tube // Ribbon torus links in S4

� = µ̄(�)

∴ �̄-invariants are concordance invariants of v-knots.
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Thank you!
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