Extending Milnor's $\bar{\mu}$ -invariants to virtual knots and welded links

Micah Chrisman

Ohio State University

CKVK* 5/2020

Milnor's concordance invariants for knots on surfaces https://arxiv.org/abs/2002.01505

Virtual concordance and the generalized Alexander polynomial https://arxiv.org/abs/1903.08737 (w/ H. U. Boden)

Motivation

Milnor's $\bar{\mu}$ -invariants

Lower central series

$$G$$
 is a group. $G_1 = G$, $G_2 = [G, G]$, $G_{q+1} = [G_q, G]$.

 $G \triangleright G_2 \triangleright G_3 \cdots$

$$L \subset S^3,$$
 an $m-$ component link $G = \pi_1(S^3 \smallsetminus L)$ $F = \langle a_1, \dots, a_m
angle$

Theorem (Chen-Milnor)

$$G/G_q \cong \langle a_1, \ldots, a_m | [a_1, \lambda_1^{(q)}], \ldots, [a_m, \lambda_m^{(q)}], F_q \rangle$$

Milnor's $\bar{\mu}$ -invariants

Magnus expansion

 $f \in F$, Define $\epsilon(f) \in \mathbb{Z}[[a_1, \ldots, a_m]]$ by:

$$a_i \to 1 + a_i, \ a_i^{-1} \to 1 - a_i + a_i^2 - a_i^3 + \cdots$$

Let $J = j_1 j_2 \cdots j_r$ be a sequence in $\{1, 2, \ldots, m\}$.

$$\epsilon(f) = 1 + \sum_{J=j_1j_2\cdots j_r} \epsilon_J(f) a_{j_1} a_{j_2}\cdots a_{j_r}$$

Applying this to $L \subset S^3$,

$$\mu_{J|k}(L) = \epsilon_J(\lambda_k^{(q)})$$
$$\Delta_J = \gcd\{\mu_j(L)\},\$$

 \hat{J} :=delete at least one term from J or any cylic permutation thereof.

Milnor's $\bar{\mu}$ -invariants

$\bar{\mu}$ -invariants

$$\bar{\mu}_J(L) \equiv \mu_J(L) \pmod{\Delta_J}$$

Properties

- $\bar{\mu}$ -invariants are invariants of link concordance (Casson, Stallings).
- $\bar{\mu}$ -invariants vanish on boundary links (Smythe).
- $\bar{\mu}$ -invariants are trivial on 1-component links i.e. knots.

Goals & Applications

GOAL: Construct extended $\bar{\mu}$ -invariants

- Invariants of virtual knots and knots in $\Sigma \times I$.
- Defined from LCS of the extended group of a virtual knot.
- Invariants under virtual concordance.
- Vanish on homologically trivial knots in $\Sigma \times I$.

APPLICATIONS:

- 1. The virtual knot concordance group is not abelian.
- **2.** Generalize $\bar{\mu}$ -invariants to welded links and welded string links.
- **3.** Reduce to 4 (out of 92800) the # of virtual knots from Green's table having unknown slice status.

Virtual concordance

Concordance

Knots K, K^* in S^3 are **concordant** if:

Slice knot/link:=Concordant to unknot/unlink

Virtual concordance (Turaev '08)

Knots $K \subset \Sigma \times I$, $K^* \subset \Sigma^* \times I$ are virtually concordant if:

Virtually slice:= Concordant to the unknot in $S^2 \times I$

Virtual knot diagrams

Virtual knots \rightarrow knots in $\Sigma \times I$.

Virtual knots \rightarrow knots in $\Sigma \times I$.

Virtual knots \rightarrow knots in $\Sigma \times I$.

Extended Reidemeister moves

Virtual knot concordance (Kauffman '14)

Theorem (Carter-Kamada-Saito '00)

Two knots in thickened surfaces are virtually concordant if and only if they represent concordant virtual knots.

Example (5.1216)

Theorem (Boden-Nagel '17)

Two classical knots in S^3 are concordant if and only if they are virtually concordant.

Theorem (Boden-Nagel '17)

Two classical knots in S^3 are concordant if and only if they are virtually concordant.

Theorem (C, https://arxiv.org/abs/1904.05288)

Every virtual knot v is concordant to:

- a prime satellite virtual knot,
- a prime hyperbolic virtual knot, and
- if v is almost classical (AC) knot, a prime satellite AC knot and a prime hyperbolic AC knot having the same Alexander polynomial.

Slice obstructions

2008-2019

- (Turaev) graded genus ϑ .
- (Dye-Kaestner-Kauffman) Rasmussen invariant.
- (C-Kaestner) Henrich-Turaev polynomial.
- (Rushworth) a 2nd Rasmussen invariant.
- (Boden-C-Gaudreau 1, Rushworth) odd writhe.
- (Boden-C-Gaudreau 1, Kauffman) writhe polynomial.
- (Boden-C-Gaudreau 2) directed Tristam-Levine signature fncs.
- (Boden-C) generalized Alexander polynomial Δ^0 .

Slice status of v-knots in Green's table

Crossing	Virtual	$\vartheta = 0$	$\vartheta = 0 \&$	slice	status
number	knots	sieve	$\Delta^0 = 0$	knots	unknown
2	1	0	0	0	0
3	7	1	0	0	0
4	108	15	14	13	0
5	2448	59	51	45	2
6	90235	1476	1294	1241	36

- (BCG1,BCG2,BC) Summary of calculations above.
- (White) Calculations of Δ^0 .
- (Rushworth, Karimi) Rasmussen invariant calculations.

Status unknown

5.1216 5.1963 6.5588 6.5958 6.6589 6.7070 6.7388 6.8451 6 14781 6.15200 6.15952 6.14778 6.37879 6.31455 6.33334 6.38158 6.38183 6.43763 6.46936 6.46937 6.47024 6.47172 6.47512 6.49338 6.69085 6.52373 6.62002 6.70767 6.72353 6.71306 6.71848 6.72431 6.76251 6.76488 6.77331 6.77735 6.86951 6.89218

Status unknown

The v-knots in red are slice. (C '20)

5.1216	5.1963	6.5588	6.5958
6.6589	6.7070	6.7388	6.8451
6.14778	6.14781	6.15200	6.15952
6.31455	6.33334	6.37879	6.38158
6.38183	6.43763	6.46936	6.46937
6.47024	6.47172	6.47512	6.49338
6.52373	6.62002	6.69085	6.70767
6.71306	6.71848	6.72353	6.72431
6.76251	6.76488	6.77331	6.77735
6.86951	6.89218		

Extended $\bar{\mu}$ -invariants

Extended group

Many equivalent versions in the literature. We will use the following: (Boden-Gaudreau-Harper-Nicas-White '17) dC ah a $c = vav^{-1}$ $c = bvav^{-1}b^{-1}$ c = a $d = a^{-1}v^{-1}bva$ $d = v^{-1}bv$ d = b $\widetilde{G}(L) := \langle a_1, \ldots, a_{2n}, v | r_1, \ldots, r_{2n} \rangle$

This is an extension of the group of a virtual link L; just set v = 1.

$$G(L) = \langle a_1, \ldots, a_{2n}, v | r_1, \ldots, r_{2n}, v = 1 \rangle$$

Extended Chen-Milnor Theorem

Theorem (C '20)

L an *m*-component virtual link. Let F = F(m+1) be the free group on a_1, \ldots, a_m, v . The nilpotent quotients of $\widetilde{G} = \widetilde{G}(L)$ are given by:

$$\widetilde{G}/\widetilde{G}_q \cong \langle a_1, \ldots, a_m, v | [a_1, \widetilde{\lambda}_1^{(q)}], \ldots, [a_m, \widetilde{\lambda}_m^{(q)}], F_q \rangle.$$

Theorem (C '20)

L an *m*-component virtual link. Let F = F(m+1) be the free group on a_1, \ldots, a_m, v . The nilpotent quotients of $\widetilde{G} = \widetilde{G}(L)$ are given by:

$$\widetilde{G}/\widetilde{G}_q \cong \langle a_1, \ldots, a_m, v | [a_1, \widetilde{\lambda}_1^{(q)}], \ldots, [a_m, \widetilde{\lambda}_m^{(q)}], F_q \rangle.$$

Corollary (C '20)

If K, is a virtual knot, $F = \langle a, v \rangle$, this gives:

$$\widetilde{G}/\widetilde{G}_q \cong \langle a, v | [a, \widetilde{\lambda}^{(q)}], F_q \rangle.$$

Note: the nilpotent quotients of G(K) are free, but the nilpotent quotients of $\widetilde{G}(K)$ are generally not free.

K a virtual knot diagram, J be a sequence $\{1,2\}$, q>|J|. $\overline{lpha}_J(K)\equiv \epsilon_J(\widetilde{\lambda}^{(q)})\pmod{\Delta_{J|1}}$

The family of these residue classes are called the \overline{w} -invariants.

K a virtual knot diagram, J be a sequence $\{1,2\},~q>|J|.$ $\overline{\varkappa}_J(K)\equiv\epsilon_J(\widetilde{\lambda}^{(q)})\pmod{\Delta_{J|1}}$

The family of these residue classes are called the \overline{w} -invariants.

Theorem (C '20)

The $\overline{\mathbf{w}}$ -invariants are concordance invariants of virtual knots.

Example (3.5)

$$\begin{split} \widetilde{G} &= \langle v, a_1, a_2, a_3, a_4, a_5, a_6 | a_2 = \bar{v} a_1 v, \\ &a_3 = \bar{v} a_2 v, \\ &a_4 = \bar{v} a_3 v, \\ &a_5 = a_1 v a_4 \bar{v} \bar{a}_1, \\ &a_6 = a_2 v a_5 \bar{v} \bar{a}_2, \\ &a_1 = a_3 v a_6 \bar{v} \bar{a}_3 \rangle. \end{split}$$

Calculating first non-vanishing $\overline{\mathbf{w}}$ -invariants

(1) Compute $\widetilde{\lambda}^{(q)}$:

$$\widetilde{\lambda}^{(4)} = v^2 \bar{a} \bar{v}^2 \bar{a} \bar{v}^2 \bar{a} v^2 a^3.$$

(2) Write $\tilde{\lambda}^{(q)}$ as a product of commutators.

$$\widetilde{\lambda}^{(4)} \equiv [[v, a], a]^4 [[v, a], v]^4 \mod F_4.$$

(e.g. via Hall's Basis Theorem) (3) Use properties of ϵ_J to calculate $\epsilon_J(\widetilde{\lambda}^{(q)})$ recursively.

Example (3.5)

J	Жј	
111	0	
112	4	
121	-8	
211	4	
122	-4	
212	8	
221	-4	
222	0	

Definition (Almost classical knot)

A virtual knot is said to be almost classical if it admits a homologically trivial representative in some $\Sigma \times I$ (i.e. bounds a Seifert surface).

Theorem (C '20)

If K is concordant to an almost classical knot, then all $\overline{\mathbf{w}}$ -invariants of K are vanishing.

Theorem (C '20)

Let K be a virtual knot. If $\overline{\mathfrak{K}}_J(K) = 0$ for all sequences J, then the generalized Alexander polynomial of K is trivial.

Theorem (C '20)

Let K be a virtual knot. If $\overline{\mathbf{x}}_J(K) = 0$ for all sequences J, then the generalized Alexander polynomial of K is trivial.

Corollary (C '20)

Let K be a virtual knot. If $\bar{\kappa}_J(K) = 0$ for all sequences J, then the odd writhe, Henrich-Turaev polynomial, and affine index (or writhe) polynomial are all trivial.

Revisiting the unknown

K	Gauss code	length of $\widetilde{\lambda}^{(6)}$	$\widetilde{\lambda}^{(6)} \mod F_6$
6.6589	01-02-03-04+U3-05+U4+O6+U2-U1-U5+U6+	22	$g_{10}\bar{g}_{11}g_{12}\bar{g}_{13}$
6.7070	01+02-03-U2-04-U3-U5+U4-06+U1+05+U6+	792	$\bar{g}_{10}g_{11}$
6.15200	01+02+03-04+U3-05-06-U5-U1+U6-U4+U2+	20	$\bar{g}_{10}g_{11}g_{12}\bar{g}_{13}$
6.15952	01-02-U1-03-04+U3-U5+06+05+U6+U2-U4+	1120	$g_{10}\bar{g}_{11}\bar{g}_{12}g_{13}$
6.43763	01+U2+O3+O4-O2+U4-O5-U6-U1+U5-O6-U3+	586	$\bar{g}_{10}g_{11}$
6.47172	01+02-03-04-U3-05+U2-U6+U1+U4-06+U5+	634	$g_{10}^2 \bar{g}_{11}^2$
6.47512	01+02+03-04+U3-05-U2+U6-U1+U5-06-U4+	934	$\bar{g}_{10}^2 g_{11}^2$
6.71848	01-02+03-U1-04-U2+05+U6+U4-U5+06+U3-	586	$g_{10}\overline{g}_{11}$
6.72431	01-02+03-U1-04-U3-05+U2+O6+U5+U4-U6+	14	$g_{10}\overline{g}_{11}$
6.76251	01-02+03-U1-04-U5+O6+U2+O5+U6+U4-U3-	498	$g_{10}\overline{g}_{11}$
6.89218	01-02+U3+O4+U2+O3+U5-O6-U1-O5-U6-U4+	2278	$\bar{g}_{10}g_{11}$
The commutator basis used by ANU NQ is:

$g_1 = a$	$g_8 = [v, a, v, v]$
$g_2 = v$	$g_9 = [v, a, a, a, a]$
$g_3 = [v, a]$	$g_{10} = \left[v, a, a, a, v \right]$
$g_4 = [v, a, a]$	$g_{11} = [v, a, v, a, a]$
$g_5 = [v, a, v]$	$g_{12} = [v, a, v, a, v]$
$g_6 = [v, a, a, a]$	$g_{13} = [v, a, v, v, a]$
$g_7 = [v, a, v, a]$	$g_{14} = \left[v, a, v, v, v \right]$

	$\overline{\mathbf{w}}_{J}(K)$										
J	6.6589	6.7070	6.15200	6.15952	6.43763	6.47172	6.47512	6.71848	6.72431	6.76251	6.89218
21111	0	0	0	0	0	0	0	0	0	0	0
21211	1	-1	-1	1	-1	2	-2	1	1	1	-1
22111	0	0	0	0	0	0	0	0	0	0	0
22121	1	0	1	-1	0	0	0	0	0	0	0
22211	0	0	0	0	0	0	0	0	0	0	0
22221	0	0	0	0	0	0	0	0	0	0	0

Beyond the first non-vanishing degree

These two knots have the same GAP, graded genus, slice genus, and \overline{x} -invariants up to degree 3.

$$\begin{split} & \bar{\mathbf{x}}_{2221}(K) \equiv 1 \pmod{2} \quad \bar{\mathbf{x}}_{2211}(K) \equiv 0 \pmod{2} \quad \bar{\mathbf{x}}_{2111}(K) \equiv 1 \pmod{2} \\ & \bar{\mathbf{x}}_{2221}(K^*) \equiv 1 \pmod{2} \quad \bar{\mathbf{x}}_{2211}(K^*) \equiv 1 \pmod{2} \quad \bar{\mathbf{x}}_{2111}(K^*) \equiv 0 \pmod{2} \end{split}$$

Concatenation

 $\mathcal{VC} := ($ concordance classes of long virtual knots, #, 1 =long unknot)

 $\mathcal{VC} := ($ concordance classes of long virtual knots, #, 1 =long unknot)

Theorem (Boden-Nagel '17)

The classical knot concordance group \mathcal{C} embeds into \mathcal{VC} .

 $\mathcal{VC} := ($ concordance classes of long virtual knots, #, 1 =long unknot)

Theorem (Boden-Nagel '17)

The classical knot concordance group \mathfrak{C} embeds into $\mathfrak{V}\mathfrak{C}$.

Turaev '08

Question: "Is it abelian?"

 $\mathcal{VC} := ($ concordance classes of long virtual knots, #, 1 =long unknot)

Theorem (Boden-Nagel '17)

The classical knot concordance group \mathfrak{C} embeds into $\mathfrak{V}\mathfrak{C}$.

Turaev '08

Question: "Is it abelian?"

Theorem (Manturov '08)

Equivalence classes of long virtual knots are a non-commutative monoid.

Theorem (C)

Let \vec{K} be a long virtual knot, $\tilde{G} = \tilde{G}(\vec{K})$, and F the free group on a, v. For all $q \ge 2$, there is a isomorphisms on nilpotent quotients:

$$\widetilde{G}/\widetilde{G}_q \stackrel{\cong}{\longrightarrow} F/F_q.$$

Theorem (C)

Let \vec{K} be a long virtual knot, $\tilde{G} = \tilde{G}(\vec{K})$, and F the free group on a, v. For all $q \ge 2$, there is a isomorphisms on nilpotent quotients:

$$\widetilde{G}/\widetilde{G}_q \stackrel{\cong}{\longrightarrow} F/F_q.$$

Following Habegger-Lin '98, we define:

$$egin{aligned} &A^{(q)}_{\mathfrak{K}}: \mathfrak{VC}
ightarrow \operatorname{Aut}(F/F_{q+1})\ &A^{(q)}_{\mathfrak{K}}(ec{K})(v) = v\ &A^{(q)}_{\mathfrak{K}}(ec{K})(a) = \widetilde{\lambda}^{(q)}a(\widetilde{\lambda}^{(q)})^{-1} \end{aligned}$$

Results on \mathcal{VC}

Theorem (C '20)

 $A^{(q)}_{\mathcal{K}}$ is a concordance invariant of long virtual knots.

Results on \mathcal{VC}

Theorem (C '20)

 $A_{\mathcal{K}}^{(q)}$ is a concordance invariant of long virtual knots.

Theorem (C '20)

VC is not abelian.

Proof.

 $A_{\mathcal{K}}^{(8)}(2.1\#3.1) \neq A_{\mathcal{K}}^{(8)}(3.1\#2.1)$

Results on \mathcal{VC}

Theorem (C '20)

 $A_{\mathcal{K}}^{(q)}$ is a concordance invariant of long virtual knots.

Theorem (C '20)

VC is not abelian.

Proof.

$$A_{\mathcal{K}}^{(8)}(2.1\#3.1) \neq A_{\mathcal{K}}^{(8)}(3.1\#2.1)$$

Corollary (C '20)

There exist non-concordant long virtual knots with concordant closure.

The extended Artin representation obstructs this v-knot from being slice.

Current unknown list

This leaves the following:

Why is it true?

Extended $\bar{\mu}$ -invariants

 $\mathcal{K} = Bar-Natan's \mathcal{K} map$, Tube = Satoh's map.

Outline of proof

First, a geometric realization:

v-knots
$$\xrightarrow{\mathcal{W}}$$
 w-links $\xrightarrow{\text{Tube}}$ Ribbon torus links in S^4

■ These induce isomorphisms:

$$\widetilde{{\sf G}}({\sf K})\cong {\sf G}({\Bbb K}({\sf K}))\cong \pi_1(S^4\smallsetminus {\sf Tube}({\Bbb K}({\sf K})),*)$$

- (Boden-C, '19) Ж is functorial under concordance.
- (Boden-C, '19) Tube is functorial under concordance.
- (C, '20) Generalize $\bar{\mu}$ -concordance invariants to welded links.
- The *x*-invariants are: Milnor+Tube+*X*.

Welded knots and "overcrossings commute"

The Bar-Natan 𝔆 ("Zh") map

Add a new component ω to make a semi-welded link.

How to form the extra component ω

Glue together the arcs ends arbitrarily, new crossings are virtual.

This is well-defined since "overcrossings commute" in ω .

Invariance under Reidemeister moves

ω

Lemmas for $\ensuremath{\mathbb{K}}$

Lemma (Boden-C '19)

Ж maps concordant v-knots to concordant semi-welded links.

Lemma (Boden-C '19)

Ж maps concordant v-knots to concordant semi-welded links.

Lemma (Boden-C '19)

For all virtual knots K, $\widetilde{G}(K) \cong G(\mathfrak{K}(K))$.

Satoh's Tube map I: Broken surface diagrams

Satoh's Tube map II: Definition

Theorem (Satoh '00)

L, L^{*} equivalent w-links \implies Tube(L), Tube(L^{*}) \subset S⁴ are isotopic.

Theorem (Satoh '00)

L, L^{*} equivalent w-links \implies Tube(L), Tube(L^{*}) \subset S⁴ are isotopic.

Theorem (Satoh '00)

For any welded link L,

$$G(L) \cong \pi_1(S^4 \smallsetminus Tube(L), *).$$

Definition (Torus Link Concordance)

A concordance of ribbon torus links $T_0, T_1 \subset S^4$ is a smooth proper embedding W in $S^4 \times I$ with finitely many components, each diffeomorphic to $(S^1 \times S^1) \times I$, and $W \cap (S^4 \times \{i\}) = T_i$ for i = 0, 1.

Theorem (Boden-C '19)

 L, L^* concordant w-links \implies Tube(L), Tube(L^*) concordant.

Lemma (C '20)

If L, L^{*} welded-concordant virtual links, Λ a concordance between Tube(L), Tube(L^{*}), then:

$$Q_q(\pi_1(S^4 \smallsetminus T)) \cong Q_q(\pi_1(S^4 \times I \smallsetminus \Lambda)) \cong Q_q(\pi_1(S^4 \smallsetminus T^*))$$

$$Q_q(G(L)) \cong Q_q(\pi_1(S^4 \times I \smallsetminus \Lambda)) \cong Q_q(G(L^*))$$

and the isomorphisms preserve longitude words. Here $Q_q(A)$ denotes the q-th nilpotent quotient of A.

Lemma (C '20)

If L, L^{*} welded-concordant virtual links, Λ a concordance between Tube(L), Tube(L^{*}), then:

$$Q_q(\pi_1(S^4\smallsetminus T))\cong Q_q(\pi_1(S^4 imes I\smallsetminus \Lambda))\cong Q_q(\pi_1(S^4\smallsetminus T^*))$$

$$Q_q(G(L)) \cong Q_q(\pi_1(S^4 \times I \smallsetminus \Lambda)) \cong Q_q(G(L^*))$$

and the isomorphisms preserve longitude words. Here $Q_q(A)$ denotes the q-th nilpotent quotient of A.

Proof.

Apply Stalling's theorem.

Theorem (C '20)

If L, L^{*} are welded-concordant virtual links (or concordant ribbon torus links in S^4), then for all sequences J with $|J| \ge 2$:

 $\bar{\mu}_J(L) \equiv \bar{\mu}_J(L^*) \pmod{\Delta_J}.$

49

All together now

Recall that each map is functorial under concordance

v-knots
$$\xrightarrow{\mathsf{W}}$$
 w-links $\xrightarrow{\mathsf{Tube}}$ Ribbon torus links in S^4

All together now

Recall that each map is functorial under concordance

v-knots
$$\xrightarrow{\mathsf{W}}$$
 w-links $\xrightarrow{\mathsf{Tube}}$ Ribbon torus links in S^4

$$\overline{\mathsf{w}} = \bar{\mu}(\mathsf{W})$$

All together now

Recall that each map is functorial under concordance

v-knots
$$\xrightarrow{\mathcal{W}}$$
 w-links $\xrightarrow{\text{Tube}}$ Ribbon torus links in S^4

$\overline{\mathbf{w}} = \overline{\mu}(\mathbf{W})$

∴ [¯] x-invariants are concordance invariants of v-knots.

Thank you!