Extending Milnor's $\bar{\mu}$-invariants to virtual knots and welded links

Micah Chrisman

Ohio State University

CKVK* 5/2020

Based on...

Milnor's concordance invariants for knots on surfaces https://arxiv.org/abs/2002.01505

Virtual concordance and the generalized Alexander polynomial https://arxiv.org/abs/1903.08737 (w/ H. U. Boden)

Motivation

Milnor's $\bar{\mu}$-invariants

Lower central series

G is a group. $G_{1}=G, G_{2}=[G, G], G_{q+1}=\left[G_{q}, G\right]$.

$$
G \triangleright G_{2} \triangleright G_{3} \ldots
$$

$$
\begin{gathered}
L \subset S^{3}, \text { an } m \text { - component link } \\
G=\pi_{1}\left(S^{3} \backslash L\right) \\
F=\left\langle a_{1}, \ldots, a_{m}\right\rangle
\end{gathered}
$$

Theorem (Chen-Milnor)

$$
G / G_{q} \cong\left\langle a_{1}, \ldots, a_{m} \mid\left[a_{1}, \lambda_{1}^{(q)}\right], \ldots,\left[a_{m}, \lambda_{m}^{(q)}\right], F_{q}\right\rangle
$$

Milnor's $\bar{\mu}$-invariants

Magnus expansion

$f \in F$, Define $\epsilon(f) \in \mathbb{Z}\left[\left[a_{1}, \ldots, a_{m}\right]\right]$ by:

$$
a_{i} \rightarrow 1+a_{i}, \quad a_{i}^{-1} \rightarrow 1-a_{i}+a_{i}^{2}-a_{i}^{3}+\cdots
$$

Let $J=j_{1} j_{2} \cdots j_{r}$ be a sequence in $\{1,2, \ldots, m\}$.

$$
\epsilon(f)=1+\sum_{J=j_{1} j_{2} \cdots j_{r}} \epsilon J(f) a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}
$$

Applying this to $L \subset S^{3}$,

$$
\begin{aligned}
\mu_{J \mid k}(L) & =\epsilon_{J}\left(\lambda_{k}^{(q)}\right) \\
\Delta_{J} & =\operatorname{gcd}\left\{\mu_{j}(L)\right\},
\end{aligned}
$$

$\hat{\jmath}:=$ delete at least one term from J or any cylic permutation thereof.

Milnor's $\bar{\mu}$-invariants

$\bar{\mu}$-invariants

$$
\bar{\mu}_{J}(L) \equiv \mu_{J}(L) \quad\left(\bmod \Delta_{J}\right)
$$

Properties

■ $\bar{\mu}$-invariants are invariants of link concordance (Casson, Stallings).

- $\bar{\mu}$-invariants vanish on boundary links (Smythe).

■ $\bar{\mu}$-invariants are trivial on 1-component links i.e. knots.

Goals \& Applications

GOAL: Construct extended $\bar{\mu}$-invariants

■ Invariants of virtual knots and knots in $\Sigma \times I$.
■ Defined from LCS of the extended group of a virtual knot.

- Invariants under virtual concordance.
- Vanish on homologically trivial knots in $\Sigma \times I$.

APPLICATIONS:

1. The virtual knot concordance group is not abelian.
2. Generalize $\bar{\mu}$-invariants to welded links and welded string links.
3. Reduce to 4 (out of 92800) the \# of virtual knots from Green's table having unknown slice status.

Virtual concordance

Knots K, K^{*} in S^{3} are concordant if:

Slice knot/link:=Concordant to unknot/unlink

Virtual concordance (Turaev ‘08)

Knots $K \subset \Sigma \times I, K^{*} \subset \Sigma^{*} \times I$ are virtually concordant if:

Virtually slice: = Concordant to the unknot in $S^{2} \times 1$

$$
\infty
$$

Virtual knots \rightarrow knots in $\Sigma \times I$.

Virtual knots \rightarrow knots in $\Sigma \times I$.

$$
\theta \theta
$$

$$
\begin{aligned}
& x_{0}=10=1 \mid x=y
\end{aligned}
$$

Virtual knot concordance (Kauffman '14)

Theorem (Carter-Kamada-Saito '00)

Two knots in thickened surfaces are virtually concordant if and only if they represent concordant virtual knots.

Example (5.1216)

0000000000000000000000000000000000

Some facts about virtual concordance

Theorem (Boden-Nagel '17)
 Two classical knots in S^{3} are concordant if and only if they are virtually concordant.

Some facts about virtual concordance

Theorem (Boden-Nagel '17)

Two classical knots in S^{3} are concordant if and only if they are virtually concordant.

Theorem (C, https://arxiv.org/abs/1904.05288)

Every virtual knot v is concordant to:

- a prime satellite virtual knot,
- a prime hyperbolic virtual knot, and
- if v is almost classical (AC) knot, a prime satellite AC knot and a prime hyperbolic AC knot having the same Alexander polynomial.

Slice obstructions

2008-2019

■ (Turaev) graded genus ϑ.

- (Dye-Kaestner-Kauffman) Rasmussen invariant.
- (C-Kaestner) Henrich-Turaev polynomial.
- (Rushworth) a $2^{\text {nd }}$ Rasmussen invariant.
- (Boden-C-Gaudreau 1, Rushworth) odd writhe.
- (Boden-C-Gaudreau 1, Kauffman) writhe polynomial.
- (Boden-C-Gaudreau 2) directed Tristam-Levine signature fncs.
- (Boden-C) generalized Alexander polynomial Δ^{0}.

Slice status of v-knots in Green's table

Crossing number	Virtual knots	$\vartheta=0$ sieve	$\vartheta=0 \&$ $\Delta^{0}=0$	slice knots	status unknown
2	1	0	0	0	0
3	7	1	0	0	0
4	108	15	14	13	0
5	2448	59	51	45	2
6	90235	1476	1294	1241	36

■ (BCG1,BCG2,BC) Summary of calculations above.
■ (White) Calculations of Δ^{0}.

- (Rushworth, Karimi) Rasmussen invariant calculations.

5.1216	5.1963	6.5588	6.5958
6.6589	6.7070	6.7388	6.8451
6.14778	6.14781	6.15200	6.15952
6.31455	6.33334	6.37879	6.38158
6.38183	6.43763	6.46936	6.46937
6.47024	6.47172	6.47512	6.49338
6.52373	6.62002	6.69085	6.70767
6.71306	6.71848	6.72353	6.72431
6.76251	6.76488	6.77331	6.77735
6.86951	6.89218		

Status unknown

The v-knots in red are slice. (C '20)

5.1216	5.1963	6.5588	6.5958
6.6589	6.7070	6.7388	6.8451
6.14778	6.14781	6.15200	6.15952
6.31455	6.33334	6.37879	6.38158
6.38183	6.43763	6.46936	6.46937
6.47024	6.47172	6.47512	6.49338
6.52373	6.62002	6.69085	6.70767
6.71306	6.71848	6.72353	6.72431
6.76251	6.76488	6.77331	6.77735
6.86951	6.89218		

Extended $\bar{\mu}$-invariants

Extended group

Many equivalent versions in the literature. We will use the following: (Boden-Gaudreau-Harper-Nicas-White '17)

$$
\begin{aligned}
& c=v a v^{-1} \\
& d=a^{-1} v^{-1} b v a
\end{aligned}
$$

$$
\widetilde{G}(L):=\left\langle a_{1}, \ldots, a_{2 n}, v \mid r_{1}, \ldots, r_{2 n}\right\rangle
$$

This is an extension of the group of a virtual link L; just set $v=1$.

$$
G(L)=\left\langle a_{1}, \ldots, a_{2 n}, v \mid r_{1}, \ldots, r_{2 n}, v=1\right\rangle
$$

Extended Chen-Milnor Theorem

Theorem (C '20)

L an m-component virtual link. Let $F=F(m+1)$ be the free group on a_{1}, \ldots, a_{m}, v. The nilpotent quotients of $\widetilde{G}=\widetilde{G}(L)$ are given by:

$$
\widetilde{G} / \widetilde{G}_{q} \cong\left\langle a_{1}, \ldots, a_{m}, v \mid\left[a_{1}, \tilde{\lambda}_{1}^{(q)}\right], \ldots,\left[a_{m}, \widetilde{\lambda}_{m}^{(q)}\right], F_{q}\right\rangle .
$$

Extended Chen-Milnor Theorem

Theorem (C '20)

L an m-component virtual link. Let $F=F(m+1)$ be the free group on a_{1}, \ldots, a_{m}, v. The nilpotent quotients of $\widetilde{G}=\widetilde{G}(L)$ are given by:

$$
\widetilde{G} / \widetilde{G}_{q} \cong\left\langle a_{1}, \ldots, a_{m}, v \mid\left[a_{1}, \widetilde{\lambda}_{1}^{(q)}\right], \ldots,\left[a_{m}, \widetilde{\lambda}_{m}^{(q)}\right], F_{q}\right\rangle .
$$

Corollary (C'20)
If K, is a virtual knot, $F=\langle a, v\rangle$, this gives:

$$
\widetilde{G} / \widetilde{G}_{q} \cong\left\langle a, v \mid\left[a, \widetilde{\lambda}^{(q)}\right], F_{q}\right\rangle .
$$

Note: the nilpotent quotients of $G(K)$ are free, but the nilpotent quotients of $\widetilde{G}(K)$ are generally not free.

Extended $\bar{\mu}$-invariants

K a virtual knot diagram, J be a sequence $\{1,2\}, q>|J|$.

$$
\overline{\mathcal{}}_{J}(K) \equiv \epsilon_{J}\left(\widetilde{\lambda}^{(q)}\right) \quad\left(\bmod \Delta_{J \mid 1}\right)
$$

The family of these residue classes are called the $\overline{\mathcal{*}}$-invariants.

Extended $\bar{\mu}$-invariants

K a virtual knot diagram, J be a sequence $\{1,2\}, q>|J|$.

$$
\overline{\mathcal{K}}_{J}(K) \equiv \epsilon_{J}\left(\widetilde{\lambda}^{(q)}\right) \quad\left(\bmod \Delta_{J \mid 1}\right)
$$

The family of these residue classes are called the $\overline{\mathcal{*}}$-invariants.

Theorem (C'20)

The $\bar{ж}$-invariants are concordance invariants of virtual knots.

Example (3.5)

$$
\begin{aligned}
\widetilde{G}=\left\langle v, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right| a_{2} & =\bar{v} a_{1} v \\
a_{3} & =\bar{v} a_{2} v \\
a_{4} & =\bar{v} a_{3} v \\
a_{5} & =a_{1} v a_{4} \bar{v} \bar{a}_{1} \\
a_{6} & =a_{2} v a_{5} \bar{v} \bar{a}_{2} \\
a_{1} & \left.=a_{3} v a_{6} \bar{v} \bar{a}_{3}\right\rangle
\end{aligned}
$$

Example (3.5)

Calculating first non-vanishing $\bar{ж}$-invariants

(1) Compute $\widetilde{\lambda}^{(q)}$:

$$
\widetilde{\lambda}^{(4)}=v^{2} \bar{a} \bar{v}^{2} \bar{a} \bar{v}^{2} \bar{a} v^{2} a^{3} .
$$

(2) Write $\widetilde{\lambda}^{(q)}$ as a product of commutators.

$$
\tilde{\lambda}^{(4)} \equiv[[v, a], a]^{4}[[v, a], v]^{4} \quad \bmod F_{4} .
$$

(e.g. via Hall's Basis Theorem)
(3) Use properties of ϵ_{J} to calculate $\epsilon_{J}\left(\widetilde{\lambda}^{(q)}\right)$ recursively.

Example (3.5)

J	$\overline{\aleph_{J}}$
111	0
112	4
121	-8
211	4
122	-4
212	8
221	-4
222	0

Properties

Definition (Almost classical knot)

A virtual knot is said to be almost classical if it admits a homologically trivial representative in some $\Sigma \times I$ (i.e. bounds a Seifert surface).

Theorem (C '20)

If K is concordant to an almost classical knot, then all $\overline{\mathcal{K}}$-invariants of K are vanishing.

Properties

Theorem (C '20)

Let K be a virtual knot. If $\overline{{ }_{\mathcal{K}}^{J}}(K)=0$ for all sequences J, then the generalized Alexander polynomial of K is trivial.

Properties

Theorem (C '20)

Let K be a virtual knot. If $\overline{{ }_{\mathcal{K}}^{J}}(K)=0$ for all sequences J, then the generalized Alexander polynomial of K is trivial.

Corollary (C '20)

Let K be a virtual knot. If $\overline{\mathcal{乛}}_{J}(K)=0$ for all sequences J, then the odd writhe, Henrich-Turaev polynomial, and affine index (or writhe) polynomial are all trivial.

Revisiting the unknown

K	Gauss code	length of $\widetilde{\lambda}^{(6)}$	$\widetilde{\lambda}^{(6)} \bmod F_{6}$
6.6589	O1-O2-O3-O4+U3-O5+U4+O6+U2-U1-U5+U6+	22	$g_{10} \bar{g}_{11} g_{12} \bar{g}_{13}$
6.7070	O1+O2-O3-U2-O4-U3-U5+U4-O6+U1+O5+U6+	792	$\bar{g}_{10} g_{11}$
6.15200	O1+O2+O3-O4+U3-O5-O6-U5-U1+U6-U4+U2+	20	$\bar{g}_{10} g_{11} g_{12} \bar{g}_{13}$
6.15952	O1-O2-U1-O3-O4+U3-U5+O6+O5+U6+U2-U4+	1120	$g_{10} \bar{g}_{11} \bar{g}_{12} g_{13}$
6.43763	O1+U2+O3+O4-O2+U4-O5-U6-U1+U5-O6-U3+	586	$\bar{g}_{10} g_{11}$
6.47172	O1+O2-O3-O4-U3-O5+U2-U6+U1+U4-O6+U5+	634	$g_{10}^{2} \bar{g}_{11}^{2}$
6.47512	O1+O2+O3-O4+U3-O5-U2+U6-U1+U5-O66-U4+	934	$\bar{g}_{10}^{2} g_{11}^{2}$
6.71848	O1-O2+O3-U1-O4-U2+O5+U6+U4-U5+O6+U3-	586	$g_{10} \bar{g}_{11}$
6.72431	O1-O2+O3-U1-O4-U3-O5+U2+O6+U5+U4-U6+	14	$g_{10} \bar{g}_{11}$
6.76251	O1-O2+O3-U1-O4-U5+O6+U2+O5+U6+U4-U3-	498	$g_{10} \bar{g}_{11}$
6.89218	O1-O2+U3+O4+U2+O3+U5-O6-U1-O5-U6-U4+	2278	$\bar{g}_{10} g_{11}$

Revisiting the unknown

The commutator basis used by $A N U N Q$ is:

$$
\begin{aligned}
& g_{1}=a \\
& g_{2}=v \\
& g_{3}=[v, a] \\
& g_{4}=[v, a, a] \\
& g_{5}=[v, a, v] \\
& g_{6}=[v, a, a, a] \\
& g_{7}=[v, a, v, a] \\
& g_{8}=[v, a, v, v] \\
& g_{9}=[v, a, a, a, a] \\
& g_{10}=[v, a, a, a, v] \\
& g_{11}=[v, a, v, a, a] \\
& g_{12}=[v, a, v, a, v] \\
& g_{13}=[v, a, v, v, a] \\
& g_{14}=[v, a, v, v, v]
\end{aligned}
$$

Revisiting the unknown

J	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{N}{\mathrm{~N}} \\ & \stackrel{0}{2} \end{aligned}$	$$		$$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	$\stackrel{\underset{\sim}{\underset{\sim}{N}}}{\substack{\text { N}}}$	$$	$\stackrel{\infty}{\sim}$
21111	0	0	0	0	0	0	0	0	0	0	0
21211	1	-1	-1	1	-1	2	-2	1	1	1	-1
22111	0	0	0	0	0	0	0	0	0	0	0
22121	1	0	1	-1	0	0	0	0	0	0	0
22211	0	0	0	0	0	0	0	0	0	0	0
22221	0	0	0	0	0	0	0	0	0	0	0

Beyond the first non-vanishing degree

These two knots have the same GAP, graded genus, slice genus, and $\overline{\text { ж }}$-invariants up to degree 3 .

4.19

4.32

$$
\begin{aligned}
\overline{\mathcal{\aleph}}_{2221}(K) \equiv 1 & (\bmod 2) & \overline{\mathcal{乛}}_{2211}(K) \equiv 0 & (\bmod 2) & \overline{\mathcal{乛}}_{2111}(K) \equiv 1 & (\bmod 2) \\
\bar{\aleph}_{2221}\left(K^{*}\right) \equiv 1 & (\bmod 2) & \bar{\aleph}_{2211}\left(K^{*}\right) \equiv 1 & (\bmod 2) & \bar{\aleph}_{2111}\left(K^{*}\right) \equiv 0 & (\bmod 2)
\end{aligned}
$$

Virtual knot concordance group

Concatenation

Definition \& background

Virtual concordance group
 $\mathcal{V E}:=($ concordance classes of long virtual knots, $\#, 1=$ long unknot $)$

Definition \& background

Virtual concordance group

$\mathcal{V E}:=($ concordance classes of long virtual knots, $\#, 1=$ long unknot $)$

Theorem (Boden-Nagel '17)

The classical knot concordance group \mathcal{C} embeds into VC.

Definition \& background

Virtual concordance group

$\mathcal{V C}:=($ concordance classes of long virtual knots, $\#, 1=$ long unknot $)$

Theorem (Boden-Nagel '17)

The classical knot concordance group \mathcal{C} embeds into $\mathcal{V C}$.

Turaev '08

Question: "Is it abelian?"

Definition \& background

Virtual concordance group

$\mathcal{V C}:=($ concordance classes of long virtual knots, $\#, 1=$ long unknot $)$

Theorem (Boden-Nagel '17)

The classical knot concordance group \mathcal{C} embeds into \mathcal{V} C.

Turaev '08

Question: "Is it abelian?"

Theorem (Manturov '08)

Equivalence classes of long virtual knots are a non-commutative monoid.

Extended Artin representation

Theorem (C)

Let \vec{K} be a long virtual knot, $\widetilde{G}=\widetilde{G}(\vec{K})$, and F the free group on a, v. For all $q \geq 2$, there is a isomorphisms on nilpotent quotients:

$$
\widetilde{G} / \widetilde{G}_{q} \xrightarrow{\cong} F / F_{q} .
$$

Extended Artin representation

Theorem (C)

Let \vec{K} be a long virtual knot, $\widetilde{G}=\widetilde{G}(\vec{K})$, and F the free group on a, v. For all $q \geq 2$, there is a isomorphisms on nilpotent quotients:

$$
\widetilde{G} / \widetilde{G}_{q} \xrightarrow{\cong} F / F_{q} .
$$

Following Habegger-Lin '98, we define:

$$
\begin{aligned}
A_{\varkappa}^{(q)}: \mathcal{V C} & \rightarrow \operatorname{Aut}\left(F / F_{q+1}\right) \\
A_{\nless}^{(q)}(\vec{K})(v) & =v \\
A_{\nless}^{(q)}(\vec{K})(a) & =\widetilde{\lambda}^{(q)} a\left(\widetilde{\lambda}^{(q)}\right)^{-1}
\end{aligned}
$$

Results on $\mathcal{V C}$

Theorem (C'20)
$A_{\varkappa}^{(q)}$ is a concordance invariant of long virtual knots.

Results on $\mathcal{V C}$

Theorem (C '20)

$A_{\varkappa}^{(q)}$ is a concordance invariant of long virtual knots.
Theorem (C'20)
\mathcal{V} e is not abelian.

Proof.

$A_{\text {※ }}^{(8)}(2.1 \# 3.1) \neq A_{\text {※ }}^{(8)}(3.1 \# 2.1)$

Results on $\mathcal{V C}$

Theorem (C'20)

$A_{\varkappa}^{(q)}$ is a concordance invariant of long virtual knots.
Theorem (C '20)
\mathcal{V} e is not abelian.

Proof.

$A_{\nless}^{(8)}(2.1 \# 3.1) \neq A_{\nless}^{(8)}(3.1 \# 2.1)$
Corollary (C '20)
There exist non-concordant long virtual knots with concordant closure.

Twelfth knot

The extended Artin representation obstructs this v-knot from being slice.

$\underline{6.8451}$

Current unknown list

This leaves the following:

Why is it true?

Extended $\bar{\mu}$-invariants

$$
\mathcal{K}=\text { Bar-Natan's } \mathcal{K} \text { map, Tube }=\text { Satoh's map. }
$$

Outline of proof

- First, a geometric realization:

$$
\text { v-knots } \xrightarrow{\text { ж }} \text { w-links } \xrightarrow{\text { Tube }} \text { Ribbon torus links in } S^{4}
$$

- These induce isomorphisms:

$$
\widetilde{G}(K) \cong G(\mathcal{M}(K)) \cong \pi_{1}\left(S^{4} \backslash \operatorname{Tube}(\nVdash(K)), *\right)
$$

- (Boden-C, '19) \mathbb{K} is functorial under concordance.
- (Boden-C, '19) Tube is functorial under concordance.
- (C, '20) Generalize $\bar{\mu}$-concordance invariants to welded links.
- The $\overline{\mathcal{K}}$-invariants are: Milnor+Tube $+\mathcal{K}$.

Welded knots $:=\frac{\text { virtual knots }}{\text { "overcrossings commute". }}$

The Bar-Natan K ("Zh") map

Add a new component ω to make a semi-welded link.

How to form the extra component ω
Glue together the arcs ends arbitrarily, new crossings are virtual.

This is well-defined since "overcrossings commute" in ω.

$$
\infty
$$

Invariance under Reidemeister moves

$$
\begin{aligned}
& K(S-(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 必一必一必 }
\end{aligned}
$$

Lemmas for \mathcal{K}

Lemma (Boden-C ‘19)

Ж maps concordant v-knots to concordant semi-welded links.

Lemmas for \nless

Lemma (Boden-C ‘19)

K maps concordant v-knots to concordant semi-welded links.

Lemma (Boden-C ‘19)

For all virtual knots $K, \widetilde{G}(K) \cong G(\nVdash(K))$.

$$
\begin{aligned}
& c=\omega a \omega^{-1} \\
& x=c^{-1} b c \\
& d=\omega^{-1} x \omega=a^{-1} \omega^{-1} b \omega a
\end{aligned}
$$

$$
\begin{aligned}
& d=\omega^{-1} b \omega \\
& x=d a d^{-1} \\
& c=\omega x \omega^{-1}=b \omega a \omega^{-1} b^{-1}
\end{aligned}
$$

t

Satoh's Tube map II: Definition

Properties of Tube

Theorem (Satoh '00)
L, L^{*} equivalent w-links $\Longrightarrow \operatorname{Tube}(L)$, Tube $\left(L^{*}\right) \subset S^{4}$ are isotopic.

Properties of Tube

Theorem (Satoh '00)

L, L^{*} equivalent w-links \Longrightarrow Tube (L), Tube $\left(L^{*}\right) \subset S^{4}$ are isotopic.

Theorem (Satoh '00)

For any welded link L,

$$
G(L) \cong \pi_{1}\left(S^{4} \backslash \operatorname{Tube}(L), *\right)
$$

Concordance invariance of Tube

Definition (Torus Link Concordance)

A concordance of ribbon torus links $T_{0}, T_{1} \subset S^{4}$ is a smooth proper embedding W in $S^{4} \times I$ with finitely many components, each diffeomorphic to $\left(S^{1} \times S^{1}\right) \times I$, and $W \cap\left(S^{4} \times\{i\}\right)=T_{i}$ for $i=0,1$.

Theorem (Boden-C '19)

L, L^{*} concordant w-links \Longrightarrow Tube (L), Tube(L^{*}) concordant.

$\bar{\mu}$-invariants for welded links

Lemma (C ‘20)

If L, L^{*} welded-concordant virtual links, Λ a concordance between Tube(L), Tube(L^{*}), then:

$$
\begin{aligned}
& Q_{q}\left(\pi_{1}\left(S^{4} \backslash T\right)\right) \cong Q_{q}\left(\pi_{1}\left(S^{4} \times I \backslash \Lambda\right)\right) \\
& \cong Q_{q}\left(\pi_{1}\left(S^{4} \backslash T^{*}\right)\right) \\
& Q_{q}(G(L)) \cong Q_{q}\left(\pi_{1}\left(S^{4} \times I \backslash \Lambda\right)\right)
\end{aligned}
$$

and the isomorphisms preserve longitude words. Here $Q_{q}(A)$ denotes the q-th nilpotent quotient of A.

$\bar{\mu}$-invariants for welded links

Lemma (C ‘20)

If L, L^{*} welded-concordant virtual links, Λ a concordance between Tube(L), Tube(L^{*}), then:

$$
\begin{aligned}
Q_{q}\left(\pi_{1}\left(S^{4} \backslash T\right)\right) & \cong Q_{q}\left(\pi_{1}\left(S^{4} \times I \backslash \Lambda\right)\right) \\
Q_{q}(G(L)) & \cong Q_{q}\left(\pi_{1}\left(\pi_{1}\left(S^{4} \times I \backslash \Lambda\right)\right)\right.
\end{aligned}
$$

and the isomorphisms preserve longitude words. Here $Q_{q}(A)$ denotes the q-th nilpotent quotient of A.

Proof.

Apply Stalling's theorem.

$\bar{\mu}$-invariants for welded links

Theorem (C '20)

If L, L^{*} are welded-concordant virtual links (or concordant ribbon torus links in S^{4}), then for all sequences J with $|J| \geq 2$:

$$
\bar{\mu}_{J}(L) \equiv \bar{\mu}_{J}\left(L^{*}\right) \quad\left(\bmod \Delta_{J}\right)
$$

All together now

Recall that each map is functorial under concordance
v-knots $\xrightarrow{\text { * }}$ w-links $\xrightarrow{\text { Tube }}$ Ribbon torus links in S^{4}

All together now

Recall that each map is functorial under concordance

v-knots $\xrightarrow{\text { * }}$ w-links $\xrightarrow{\text { Tube }}$ Ribbon torus links in S^{4}

$$
\overline{\mathcal{K}}=\bar{\mu}(\nVdash)
$$

All together now

Recall that each map is functorial under concordance

v-knots $\xrightarrow{\text { * }}$ w-links $\xrightarrow{\text { Tube }}$ Ribbon torus links in S^{4}

$$
\overline{\mathcal{K}}=\bar{\mu}(\mathbb{K})
$$

$\therefore \overline{\text { K}}$-invariants are concordance invariants of v-knots.

Thank you!

